
A HPC Sparse Solver Interface for Scalable Multilevel Methods

Fang Liu1, Masha Sosonkina2, Randall Bramley1

1. Computer Science Department, Indiana University
2. Ames Laboratory, Iowa State University

Keywords: component architecture and interfaces; sparse
matrix computations
Abstract
Sparse linear system solvers account for many of the CPU cy-
cles in scientific computing simulations. Several HPC solver
packages have been created and distributed to improve ef-
ficiency. As part of the Common Component Architecture
(CCA) effort, a LInear Solver Interface (LISI) is being devel-
oped among them. LISI does not supplant HPC solvers, and
the goal is to make it easier for users to switch solvers per ap-
plication (run-time) demands. Some highly efficient scalable
system methods, such as multigrid, multipole, or hierarchical
O(N) solvers, typically need more information than base LISI
interface provides. The recursive features of those solvers re-
quire special care when defining software interfaces. Through
subclassing LISI, a medium-level interface is designed foran
application to have finer controls over an Algebraic Multigrid
solver. Additionally, an interface is proposed to handle the
geometric information for a Geometric Multigrid solver. For
more detailed user control, a low-level interface is designed in
an operator based manner. This paper presents design issues
in the proposed CCA interfaces and a reference implementa-
tion for several multigrid packages. Test results show thatthe
interface overhead is negligible while the usage complexity
of the packages is reduced greatly.

1 Introduction
Sparse linear systemsAx= b, with A∈ RN×N have an im-

portant role in Partial Differential Equations (PDEs) based
scientific simulation and are often the most computationally
intensive part. Massively parallel computers require scalable
solvers to fully utilize the available computer power and to
provide higher resolution simulations. Solvers must be ro-
bust and have near-optimal computational complexity, with
enough concurrency to be effectively parallelized. Multigrid
(and more generally, multilevel) techniques have been proven
scalable and optimal, because they can solve some linear sys-
tem withN unknowns withO(N) or O(N log(N)) operations
[8, 12], and have overhead costs that areO(log(p)), wherep
is the number of processes used.

A common feature of many variations of multigrid is
that they use a hierarchy of spatial discretizations (gridsor
meshes). Grids with fewer nodes are calledcoarseand ones
with more nodes are calledfine. Multigrid Method (MGM)
solvers generally have more than two levels in the hierarchy.
The important operations are:

• restriction, defining a related but smaller linear system
and mapping a vector onto the corresponding reduced
dimensionality space,

• prolongation, interpolating or extrapolating values from
a smaller to a larger linear system, and

• relaxation (also calledsmoothing), executing a few steps
of some iterative method on each level.

Restrictionand prolongation transfer information between
coarse and fine grids. Multigrid methods usually take a few
steps of an iterative method on the fine grid, then transfer that
information to the coarser grid byrestriction; after approxi-
mately solving the coarse grid system of equations, the infor-
mation is transferred back throughprolongationand another
few steps of relaxation are performed on the finer grid. The
different iterative methods can be used on different levelsof
the mesh hierarchy. This is a typical V-cycle algorithm, which
may itself be repeated iteratively if necessary [8].

Multigrid methods are either Geometric Multigrid (GMG)
or Algebraic Multigrid (AMG). GMG is typically used for
structured or semistructured meshes, where the geometry of
the problem defines the various multigrid levels. AMG re-
quires no explicit knowledge of the problem geometry [1] to
determine coarser grids and is useful for unstructured meshes
where it is impractical to construct coarser meshes geomet-
rically. In AMG, intergrid transfer operators and coarse grid
equations are based solely on the nonzero structure ofA. Soft-
ware interface design for AMG is more straightforward than
for GMG.

Analysis of existing multigrid packages shows that a high
level interface support is useful. The interface should help
rapid prototyping of multigrid solvers and make applica-
tion usage easier. Choosing a “best” iterative solver for an
application’s nonsymmetric systems of equations is diffi-
cult, and solver libraries have different strengths and weak-
nesses. This makes rapid plug-and-play replacing of a solver
a key goal. If the number of lines of code is used as a met-
ric to evaluate the software complexity of a package, High
Performance Preconditioners (HYPRE)’s [1] Semicoarsening
Multigrid (SMG) solver for a Poisson equation on structured
meshes requires around 217 lines of code. Solving a 3D Pois-
son equation using Portable, Extensible Toolkit for Scien-
tific Computation (PETSc)’s Data Management on Multigrid
(DMMG) [5] interface involves 101 lines, and the AMG
“smoothed aggregation” [18] solver from Trilinos ML[7] re-
quires about 183 lines of code. A major advantage of high
level interfaces is to ease switching between multigrid imple-
mentations, and between non-multigrid and multigrid solvers.

The CCA [9] is a software component model that specif-
ically addresses high performance scientific applications.
The interface is written in Scientific Interface Definition
Language (SIDL) with a language and platform indepen-
dent way, and the earlier work on proposed LISI interface
[16, 17] has successfully demonstrated a generic interface
lisi.SparseSolver, and its prototype implementation has been
applied to the fusion application codes Non-Ideal Magneto-
hydrodynamics with Rotation - Open Discussion (NIMROD)

[4] and M3D [2]. In this paper, a subclass of LISI is designed
to support more efficient multigrid solvers.

2 Interface Requirements
To identify a suitable and smallest common set of interface

among widely available multigrid solver packages [1, 13, 5],
some requirements are investigated first based on them.

2.1 Analysis of Multigrid Solvers
Both AMG and GMG methods have two basic computa-

tional phases,initialization and iteration. A hierarchy of in-
terpolation matrices are generated in the initialization phase
and the iterative phase performs intergrid data transfers and
smoothing. In Section 1, both AMG and GMG follow the
the basic multigrid solver principle differing only in the user
provided information. AMG requires only the linear system
to be used, while GMG needs both the linear system and
geometry information such as domain size and shape, dis-
cretized mesh and stencil, etc. The construction (or initializa-
tion) phase builds the hierarchy of grids based on the physics
problem, and depending on the coarsening or refinement al-
gorithm used [10] the operators may have vastly different pre-
sentations. The solving or iterative phase has two layers. One
is the outer iteration which specify a V or W cycle that can be
controlled by the MGM solver either in a manner totally hid-
den from the application or the application may call directly
each V or W cycle and control the convergence test. The sec-
ond layer is the recursive solve within one V or W. This is
done by a MGM solver internally but an interface can be pro-
vided to the application. Trilinos ML provides both methods:
ML SolveMGV only performs one multigrid V cycle itera-
tion andML Iterateiterates until convergence to solve the lin-
ear system. HYPRE’s BOOMERAMG only allows control of
the outer loops throughHYPREBoomerAMGSolvemethod.
When an interface is designed, the responsibility for these two
phases is split between the application and solver side.

2.2 Interface Boundary
Since the interface sits between the application and solver

packages, the division of work needs to be examed. The two
solving phases for MGM discussed in Section 2.1 provide
three use cases (Figures 1, 2, 3). Some applications are built

Figure 1. Application Builds the Multigrid Hierarchy and
Solver

ground up for one particular purpose, and the application
code has the underlying geometric, discretization operator,

and physics information. It would be easy to let the appli-
cation to construct the hierarchy of grids and other intergrid
transformation operators and build the multigrid solver itself.
In this case the only functionality needed from solver pack-
ages is to smooth the linear system on each grid level and
to solve the coarsest grid. Then the application can use any
solver through a LISI [16] interface (Figure 1).

Figure 2. Application Builds the Multigrid Hierarchy

The second case has the application building the hierar-
chy of grids and related operators and passing these operators
to a multigrid solver building framework. Some approaches
[5, 3] for designing an operator based interface shows this as-
sumption, while the MGM solver framework is used to fully
utilize the internal solver functions (Figure 2). This can also
happen inside the MGM solver to allow fast prototyping of a
MGM algorithm. Our design effort will treat this interface as
a low-level interface in which multigrid application has more
controls on the solver.

Figure 3. Application Builds the Finest Grid or Initial Do-
main Information

In the third case the application only specifies the domain
information to allow the GMG solver to construct the coars-
est or finest grid linear system followed by a hierarchy of
grids, or passes the finest grid linear system to an AMG solver
to construct the coarser linear systems internally (Figure3).
This assumes GMG as a black-box solver where the applica-
tion requires the least effort to use the solvers. TerascaleOp-
timal PDE Solvers — a SciDAC ISIC (TOPS) CCA interface
[6] provides a high level access to geometric and algebraic
multigrid, but it is a bottom up design and implementation
mainly based on PETSc’s DMMG interface. Our design will
provide an interface specially for GMG and add more param-
eter control for AMG, such that it becomes the medium-level
interface in LISI.

Different interfaces can be designed for all three cases.
Each of them assumes a different level of application involve-
ment. For the first case, it is the easiest to adapt LISI when the
outside solver is needed. There are two approaches for the

second case demonstrating the successful operator based in-
terface design. Based on our previous research [17], the sub-
classing from LISI by adding more parameter controls can
be designed for the third case, while operator based interface
becomes the next level hierarchy.

2.3 Matrix or Matrix-free MGM
In Section 2.2, the boundary of interface between appli-

cation and solver shows that both matrix-based and matrix-
free interface invocations could happen in the second case
while a matrix-based version needs the explicit setting of the
multigrid operators (grid hierarchy, prolongation and restric-
tion operators) in a sparse matrix format and passed through
the interface. The matrix-free version provides a call back
function such as applying the given operator to a vector
(e.g.matrix-vector product, prolongation, restriction) for the
MGM solver to use. PCMG [5] allows a matrix-free opera-
tor to use their multigrid solver throughshell matrix. But the
third case from Section 2.2 may not be able to process the
coarsening internally in a matrix-free fashion for both AMG
and GMG solvers, so the medium-level interface need not
support matrix-free MGM, and explicitly passing the matrix
data is required.

2.4 Geometric Information for GMG
HYPRE’s [1] structured and semi-structured grid interface

provides a natural way to use GMG solver, only requiring the
user to input the grid and stencil information from the physics
problems. In HYPRE the domain is partitioned among the
given processors, and the mesh points are identified with a
global integer index. The domain owned by current proces-
sor is represented as a box with the start mesh point and end
mesh point in a coordinate-wise index. The application must
prepare the values to insert based on coefficient functions of
PDEs. The linear system and right-hand side values are set
through the conceptual interface along with geometric infor-
mation so that an internal data structure is able to do coarsen-
ing with the given geometric information. HYPRE also pro-
vides an interface to set boundary values for the problem, and
it is also associated with geometric information in the formof
a box domain.

PETSc’s DMMG [5] interface also provides an interface
for an application to specify the domain through its DA
object. The domain is specified by the number of mesh
points in each domain direction, and only a single grid do-
main is supported. The stencil typeDA STENCILSTARand
DA STENCILBOX can be chosen, where the former indi-
cates only(i, j,k), (i ± s, j,k), (i, j ± s,k), (i, j,k± s) are in
the stencil while the later allows(i±s, j ± r,k± t) to be in the
stencil, and the box stencil is supported in PETSc now.

This geometric information is based only on a structured
grid with finite difference discretizations. The question re-
mains whether an interface need to be provided for more
complex geometries. The number of possible discretization
schemes is large, so the proposed interface focuses on cur-
rently available GMG solver packages with structured grids
and finite difference schemes.

2.5 Separation of AMG and GMG
HYPRE’s BoomerAMG solver has methods to set up the

finest linear system inHYPREParCSRMatrixformat; the
maximum number of levels of multigrid; the maximum it-
eration number for total V or W cycles; stopping tolerance;
number of sweeps over the grid on the fine grid and the
coarse grid; relaxation method, etc. Trilinos’s ML wraps the
EPETRA matrix into an ML matrix with additional informa-
tion about the aggregations at each level. Other interfaces
are provided to set up the maximum levels, coarsening type,
coarse grid solver, smoothers on each level, etc. Although
some MGM solver parameters are common among AMG and
GMG solver, for the AMG, most of time when the finest lin-
ear system is given the solver package can build the coarser
systems internally. For GMG, the given domain information
(grids and stencil) is used to construct the coarse grid, andthe
solver package can build the finer linear system internally.
Based on discussion in Section 2.4, the required geometric
information for GMG may need to be set with the matrix, so
AMG and GMG interface can only share parameter setting
methods while the matrix and right-hand side setup methods
have to be different.

3 Design of LISI-MG
Because each MGM package has many application-

dependent features and the interface and information they use
differ greatly. LInear Solver Interface for Multigrid (LISI-
MG) tries to abstract a minimal common set. Then subclass-
ing can be used to support unique features or requirements
they have. The interface serves as a common entry point for
access to the different packages, and since the interface ex-
tends from earlier work [16], the application is able to access
non-MGM solvers as well.

3.1 Solver Parameters
In the lisi.SparseSolverinterface, generic solver parameter

setup methods allow finer control on the solvers. Although
multigrid solver parameters can be included to become part
of this list of parameters, more specific parameters may have
to be associated with the multigrid levels. At the minimum,
an extra integer parameter is needed in the methods for lev-
els in the hierarchy. TheMGMParameterinterface supports
multigrid solver parameter setting. To clarify the boundary
between multigrid and non-multigrid solvers, theGeneralPa-
rameterinterface is extracted from thelisi.SparseSolverinter-
face. As the name suggestsGeneralParameteris for param-
eters associated with general solvers, such assolvermethod,
preconditioner, maxitsandtol. It supports generic setup rou-
tines and routines with more specific names, such assetupTol,
setMaxits. MGMParametersets up the maximum multigrid
level, maximum number of pre/post-smoothing steps on each
level, pre/post-smoothing methods on each level, stopping
tolerance for each level of smoothing and the solver for the
coarsest level of grid. The AMG and GMG interfaces might
either encapsulateMGMParameteror inherit from MGM-
Paramter.

Some parameter settings may have dependencies forcing a
particular order, e.g., thesetMaxLevelmust be called before

setPreSmoother. Because thesetupMatrixmethod generates
the hierarchy grids,setMaxLevelmust precede other solver
related parameters. DefiningMGMParameterrequires sepa-
ration into pre/post-parameter group, so LISI uses inheritance
to avoid this and to also avoid extra work on the application
side to handle object construction forMGMParameter.

3.2 Class Hierarchy
Section 2.5 shows that except for the parameters, the

common set between AMG and GMG is small, so two
separate interfaces are provided in the LISI-MG pack-
age. For medium-level interface, theAMGSolver expects
the finest linear system input in three-array format.AMG-
Solver extends thelisi.SparseSolverinterface (renamed as
lisi.SparseSolverWithMatrix) with all its methods for setting
up right-hand sides and the linear system. The GMG solver
interfaces share theMGMParameterinterface with AMG
solver. AMGSolverand GMGSolver interfaces are on the
same level of LISI’s interface hierarchy. Because of the vari-
ance in task assignment that the application should provide,
two solver interfaces do not share the matrix setup method.
Figure 4 shows the interface hierarchy for LISI-MG. The
GeneralParameterand MGMParameterinterfaces are ex-
tended by the medium layer interfacesAMGSolverandGMG-
Solver, and the lower layer interfacelowMGMSolverextends
from AMGSolverto handle the operator-based MGM.

Figure 4. Class Hierarchy for LISI-MG Interface

3.3 AMG and GMG Interface
This interface is written in SIDL [14] to make clear that it

is language independent, and the interface is shown in [15].
As discussed earlier, aMGMParameterinterface includes all
the parameter setting routines for general multigrid solvers.
These parameters are common among HYPRE’s BOOMER-
AMG and Trilinos’s ML except forsetPreTolandsetPostTol
methods. They have been added for completeness and is use-
ful for the low-level interface. TheGMGSolverand AMG-
Solver interfaces extend from the high level interfaces and
are defined as a CCAPort which means they can be imple-

mented by CCAComponent and in turn can be exposed to
other components as a CCA service.

A GMGSolverprovides the GMG solver for the single
structured grid. Since there is no uniform way to specify the
complex geometry, some multigrid applications are devel-
oped bottom up without the clear boundary between solver
and application as we discuss in 2.2. Our interface mainly fo-
cuses on the simple grid and expects the application to set
up the linear system along with any required geometric in-
formation, such as grid and stencil. Our proposed interface
supports only a single structured grid in the rectangle do-
main, which is the single common case supported by both
PETSc and HYPRE. The grid information is set throughset-
Grid method with the global index of mesh cell, The start
and end nodes in the domain are specified as tuple. The
stencil is set throughsetStencilwith a array of lengthn in
which n = (#neighbornodes+ 1)×dimension. In general, a
star-shaped stencil is used with 5 points for 2-D grids or 7
points for the 3-D ones. ThesetupMatrixandsetupRHSas-
sume that the grid and stencil are set up already. The appli-
cation must fill thevaluesarray with the coefficients of the
PDEs system. The methodsupdateMatrixWithBoundaryand
updateRHSWithBoundaryare used to update the linear sys-
tem and right-hand side with boundary conditions.

3.4 Low-Level MGM Interface
The low-level MGM interface provides an opeartor-based

interaction between multigrid application and solvers perdis-
cussion in Section 2.2. Application sets up all the multigrid
operators such as multilevel linear systems, prolongationand
restriction operators.lowMGMSolverextendsAMGSolverin-
terface and works for both GMG and AMG since the opera-
tors are all algebraic defined. The overloaded methodsetup-
Matrix is to set up the multilevel coarser linear systems to
solve. The extra parameter is used to indicate themultigrid
level. Since the linear system is distributed (under block row
partitioning assumption), four more methods need to be over-
loaded:setStartRow, setLocalRows, setLocalNNZand set-
GlobalCols. These methods require the same extra parameter
multigrid level.

Another method is added to handle the recursive calls for
each V cycle, the method is exposed to the application, so
that the application can control the outer loop by using its own
convergence test. TherecurSolvemethod assumes that the hi-
erarchy grids are built during the initialization phase, soonly
the level number is needed to indicate the current level. Since
ML and PCMG are using the different numbering to deter-
mine the level, this interface arbitrarily chooses that level 0 is
the finest level, and leveln−1 is the coarsest, where maxi-
mum number of levels isn.

There is an auxiliary interfaceMGMOperatoris to be im-
plemented by the multigrid application to provideprolonga-
tion andrestrictionoperators. And it allows solver to callback
to get the residual array transfered between fine and coarse
grids.

4 Implementations
To validate this design, a simple reference implementa-

tion has been built for both AMG and GMG solvers us-
ing medium- and low-level interfaces. Because the em-
phasis is on the interface usability rather than on the
scientifically-significant results, we take a test example as a
two-dimensional Poisson equation:

uxx+uyy = f (1)

in the unit square domain. For AMG interface tests, the
boundary condition is defined asx× x× sin(y) and f = 0,
and the GMG interface test uses the 0 boundary conditions
and f = 1. Both AMG and GMG tests use the stopping tol-
erance of 10−8 in the relative residual and the maximum
allowed number of iterations is 200. All tests were run on
the Linux clusterodin in the Computer Science Department
at Indiana University. Odin has 128 nodes, each with two
dual core AMD Opteron 2.0 Ghz processor and 4GB RAM
on each computing node. Medium-level interface tests were
performed using 16 processes while low-level interface tests
were runing on 8 processes, and each result is the average
of at least ten runs. The components are built with the CCA
Tools [9] Version 0.6.0rc5 using a component generation tool
Bocca [11] Version 0.5.0. All the packages and tools are com-
piled with GCC 3.4.6. HYPRE version is hypre-2.0.0, and
Trilinos version is trilinos-8.0.2.

First we test the medium-level interfaceAMGSolverand
GMGSolver.

0 5 10 15

x 10
6

0

5

10

15

20

25

30

35

40
AMG interface for BoomerAMG solver

Mesh sizes

T
im

e
(s

ec
on

ds
)

CCA

NonCCA

0 5 10 15

x 10
6

0

10

20

30

40

50

60
AMG interface for Trilinos ML solver

Mesh sizes

S
ol

vi
ng

 ti
m

e
(s

ec
on

ds
)

Figure 5. Test for AMG interface

The AMGSolverinterface is implemented for HYPRE’s
BOOMERAMG solver through HYPRE’s IJ system inter-
faces. AHYPREIJMatrix is
created with finest linear system in COO format with global
row/column indices. Then it is converted to
HYPREParCSRMatrix to make it ready for the solver.
Similarly right-hand side and solution vectors are setup
as HYPREIJVector with global row indices. TheGauss-
Seidel—Jacobihybrid relaxation is used for both post- and
pre-smoother with three sweeps on each level. The maximum
number of multigrid levels is 20. The tests are done for the
mesh size of 4002, 8002, 16002, and 32002 (Figure 5 left). The
blue line shows the results of calling HYPRE’s BOOMER-

0 5 10 15

x 10
6

0

5

10

15

20

25
GMG interface for Hypre SMG solver

Mesh sizes

S
ol

vi
ng

 ti
m

e
(s

ec
on

ds
)

CCA

NonCCA

0 5 10 15

x 10
5

0

50

100

150

200

250

300

350

400

450

500
Low−level interface for In−House multigrid solver

Mesh sizes

S
ol

vi
ng

 ti
m

e
(s

ec
on

ds
)

Figure 6. Test for GMG and Low-level interface

AMG solver directly, while the red line times the results of
calling throughAMGSolverinterface. These two lines are al-
most overlapped. Thus, they demonstrate a negligible over-
head when using the proposed interface.

Trilinos ML solver is implemented withAMGSolverinter-
face. Pre-smoother isJacobi with three sweeps for all lev-
els, and aGauss Seidelsmoother is used for post-smoother
with three sweeps on each level. The coarsest solver uses
Gauss Seidel. The maximum number of levels is 20 butML
modifies this value internally based on the matrix properties.
The finest linear system is passed to the solver in COO for-
mat. The linear system is first setup asEpetraCrsMatrix, and
then converted toMLMatrix. A ML Aggregateobject is con-
structed within the implementation, and is hidden from appli-
cation users. Problem sizes are the same as for the HYPRE
BOOMERAMG test cases. The timing results (in Figure 5
right) shows a noticeable overhead only on the largest prob-
lem size of 32002.

To test the GMG interface, HYPRE’s SMG structured
grid based geometric multigrid solver was implemented with
LISI-MG with maximum 100 iterations allowed and three
pre- and post-smoothing steps. Figure 6 (left) shows a al-
most linearly increased running time versus the problem size
(160000, 640000, 2560000, and 10240000). The overhead in-
troduced is still negligible.

In order to test the low-level interface, an in-house MGM
(myMGM) application is built for the test problem (1). The
application constructs a hierarchical mesh discretization and
the associated prolongation and restriction operators, then
calls the low-level LISI-MG interface to get back the so-
lution. The lowMGMSolverinterface was implemented by
setting up the multi-level linear system throughsetupMa-
trix method, and uses the methods fromMGMParameterfor
optional multigrid solver parameters. Using the component
model, the pre/post-smoothing solver can be easily changed
for any solver package which complies with the LISI inter-
face. Since the application side generates all the operators,
it implementsMGMOperator interface to provide callback
functionality for restriction and prolongation. Solver side
only needs to use theMGMOperatorport. Figure 7 shows
the general architecture for this multigrid solver component.

Tests for mesh sizes of 67081, 265225, 594441, and

Application Multi−grid solver

Setting

grid
linear
system

recurSolve

pre−smoothing

restriction
recurSolve

prolongation

post−smoothing

multilevelGenerating multilevel
grid linear system

 Constructing restriction
and prolongation operator

solve

pcg −

parallel conjugate
gradient solver

or other solvers

Figure 7. Test Architecture for Inhouse MGMSolver

1054729 mesh nodes show a running time that increases lin-
early with increasing mesh size. In Figure 6 (right), thex-axis
is the size of meshes and they-axis is the total running time
for the whole solution process in seconds. On each level, the
number of the relaxation steps is set as the square root of
the linear system size to assure that each pre/post-smoothing
solves the system to the specified stopping tolerance. Each
run only needs two V cycles to reach the desired accuracy.
The red and blue line show the timing results formyMGM
built with and without CCA, respectively. For the small mesh
size, the overhead is trivial.

Besides the lower overhead from using the proposed in-
terface, the usage complexity is reduced greatly. In Table 1,
four solvers are compared for their CCA and non-CCA in-
vokation. The columnCCAshows the number of code lines
when calling the solvers via our proposed interface, the col-
umn Non-CCA gives the lines of code for direct solver in-
vokation. TheDiff column demonstrates the line reductions
(the larger number means better complexity reduction).

Table 1. Usage Comparisons (in Code Lines) of Solver
Packages

CCA Non-CCA Diff %
In-House Multigrid Solver 37 216 82.8

Hypre BoomerAMG 32 90 64
Trilinos ML 32 80 60
Hypre SMG 133 243 45

5 Conclusion
In this paper, a suite of publicly available multigrid pack-

ages is investigated to abstract common interfaces. This work
focuses on multigrid solvers due to their attractive perfor-
mance for high-performance computing (HPC) simulations.
Associating the component technology with multigrid solvers
provides more choices for application users: Not only to
choose a solver from the same package, but also to access
solvers across different packages. A hierarchical solver in-
terfaces corresponding to the levels of control of the appli-
cation over the multigrid solver. The interfaces are designed
for both geometric (GMG) and algebraic (AMG) multigrid
solvers. The design of the former is more complicated, mainly
because of non-uniform ways to specify the geometric infor-
mation. We demonstrate that an interface can be designed for

multigrid solvers. It enables an easy usage of current multi-
grid solver packages and leads towards a component based
application-solver interaction framework.

References
[1] Hypre: Scalable Linear Solvers : high performancepre-

conditioners.http://www.llnl.gov/CASC/linear\
_solvers/ , April 2008.

[2] M3D team. http://w3.pppl.gov/m3d/index.php ,
2008.

[3] The ML API website. http://trilinos.sandia.
gov/packages/ml/mlapi.html , April 2008.

[4] NIMROD. https://nimrodteam.org/ , 2008.
[5] PETSc: Portable Extensibel Toolkit for Scientific C om-

putation. http://www-unix.mcs.anl.gov/petsc/
petsc-as/ , April 2008.

[6] Tops Solver Component.http://www-unix.mcs.anl.
gov/scidac-tops/solver-components/tops.
html , April 2008.

[7] The Trilinos Project.http://software.sandia.gov/
trilinos , April 2008.

[8] W. L. Briggs, V. E. Henson, and S. F. McCormick.A multigrid
tutorial: second edition. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[9] CCA-Forum. The DOE Common Component Architecture
project.http://www.cca-forum.org/ , April 2008.

[10] E. Chow, R. Falgout, J. Hu, R. Tuminaro, and U. Yang. A sur-
vey of parallelization techniques for multigrid solvers.Par-
allel Processing for Scientific Computing, M.A. Heroux, P.
Raghavan, and H.D. Simon, eds., SIAM Series on Software,
Environments, and Tools, 2006.

[11] W. R. Elwasif, Boyana R. Norris, Benjamin A. Allan, and
Robert C. Armstrong. Bocca: a development environment
for HPC components. InProceedings of the 2007 sym-
posium on Component and framework technology in high-
performance and scientific computing, pages 21–30, Mon-
treal,Quebec,Canada, October 21 -22 2007.

[12] R. D. Falgout. An introduction to algebraic multigrid.Com-
puting in Science and Engineering, 8:24–33, Nov/Dec 2006.

[13] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala. ML
5.0 smoothed aggregation user’s guide. Technical Report
SAND2006-2649, Sandia National Laboratories, 2006.

[14] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Di-
vorcing Language Dependencies from a Scientific Software
Library. In 10th SIAM Conference on Parallel Process-
ing, Portsmouth, VA, March 12-14 2001. LLNL doc-
ument UCRL-JC-140349. See alsohttp://www.llnl.
gov/CASC/components/babel.html .

[15] F. Liu. LISI-MG: CCA interface for multigrid solvers.
http://www.cs.indiana.edu/˜fangliu/
lisi-mg.sidl , October 2008.

[16] F. Liu and R. Bramley. CCA-LISI: On Designing a CCA
Parallel Sparse Linear Solver Interface. InProc. 21th Int’l
Parallel & Distributed Processing Symp.(IPDPS). ACM/IEEE
Computer Society, Long Beach, CA, 2007. 10 pages.

[17] M. Sosonkina, F. Liu, and R. Bramley. Usability Levels for
Sparse Linear Algebra Components.Concurrency and Com-
putation: Practice and Experience, 20:1439–1454, 2008.

[18] R. S. Tuminaro and C. Tong. Parallel smoothed aggregation
multigrid : Aggregation strategies on massively parallel ma-
chines. InProceedings of ACM/IEEE SC 2000 Conference,
pages 5– 5, November 2000.

